一步一步教你怎样给Apache Spark贡献代码

本文将教大家怎样用10个步骤完成给Apache Spark贡献代码这个任务:)

  1. 到 Apache Spark 的github 页面内点击 fork 按钮
  2. 你的github帐户中会出现 spark 这个项目
  3. 本地电脑上, 使用
git clone [你的 spark repository 的 github 地址]
例如:
git clone git@github.com:gchen/spark.git

本地得到一个叫 spark 的文件夹

4. 进入该文件夹,使用

git remote add upstream https://github.com/apache/spark.git

添加 Apache/spark 的远程地址

5. 使用

git pull upstream master 

得到目前的 Apache/spark 的最新代码,现在我们在 你自己fork的Spark代码仓库的master 这个分支上,以后这个分支就留作跟踪 upstream 的远程代码

6. 好了,现在你可以开始贡献自己的代码了。

按照开发惯例,我们一般不在自己代码仓库的master上提交新的代码,而是需要为每一个新增的功能或者bugfix新增一个新的branch。使用:

git checkout -b my_change

创建新的分支,现在我们可以在这个分支上更改代码

7. 添加代码,并提交代码:

* git add .

* git commit -m “message need to be added here”

8. 提交Pull Request前合并冲突

在我们提交完我们的代码更新之后,一个常见的问题是远程的upstream(即apache/spark)已经有了新的更新,从而会导致我们提交Pull Request时会导致conflict。为此我们可以在提交自己这段代码前手动先把远程其他开发者的commit与我们的commit合并。使用:

git checkout master

切换到我们自己的主分支,使用

git pull upstream master 

拉出apache spark的最新的代码。切换回 my_change 分支,使用

git checkout my_change
git rebase master

然后把自己在my_change分支中的代码更新到在自己github代码仓库的my_change分支中去:

git push origin my_change 

将代码提交到自己的仓库。

9. 提交Pull Request

这时候可以在自己的仓库页面跳转到自己的my_change分支,然后点击 new pull request。按照Spark的风格规定,我们需要在新的Pull Request的标题最前面加上JIRA代号。所以我们需要在https://issues.apache.org/jira/上创建一个新的JIRA,例如https://issues.apache.org/jira/browse/SPARK-2859。然后把SPARK-2859这个代号加到你的Pull Request的标题里面。

例如:https://github.com/apache/spark/pull/1782

Pull Rquest的描述的写法很重要。有几个要点:

(1)在Pull Request的描述中,一定记得加上你提交的JIRA的url,方便JIRA系统自动把Pull Request的链接加进去,例如https://issues.apache.org/jira/browse/SPARK-2859。

(2)PR的描述要言简意赅,讲清楚你要解决的问题是什么,你怎么解决的。大家可以多参考其他committer提交的PR。

10. 等待Spark committer审核你的PR。

如果需要进一步的代码修改,你可以继续在本地的my_change分支下commit新的代码,所有新的代码会在”git push origin my_change”之后自动被加入你之前提交的Pull Request中,方便进行问题的跟踪和讨论。

11.  如果一切顺利,具有apache/spark.git 写权限的commiter就会把你的代码merge到apache/spark.git的master里面去了!

恭喜你!相信你一定很开心吧?

Happy contributing to Spark!

ps. 你的代码被merge完之后,就可以把my_change这个分支给删掉了:)

注:本文写的比较仓促,是在@lufeihaidao的基础上直接修改而成,特此感谢:https://github.com/19wu/19wu/issues/41

参考:

How to use github pull request: https://help.github.com/articles/using-pull-requests

github的多人协作: https://gist.github.com/suziewong/4378619

How to rebase a pull request:https://github.com/edx/edx-platform/wiki/How-to-Rebase-a-Pull-Request

我提交的一个JIRA例子:https://issues.apache.org/jira/browse/SPARK-2859

我提交的一个Spark PR的例子:https://github.com/apache/spark/pull/1782

大数据的价值密度

文 / 陈冠诚

注:原文刊载于《程序员》2014年第5期,略有删改。

在大数据和云计算如火如荼的今天,怎样将数据的商业价值变现成为各位老板和技术男们最关心的问题。马云经常讲,我不懂技术,所以我才要发力做云计算,做大数据。相信马总一定因为看到了云计算和大数据的潜在商业价值才做出上述决定的。在各位大佬争相跑马圈地的年代,各大公司都开始占领数据源头,从构建自己线上应用的生态圈入手,将用户的数据牢牢掌握在自己手中,以期望将来能从这些数据中挖掘出“潜在”的商业价值,例如在2014年风生水起的互联网金融行业就是其中典型。请注意,笔者这里专门对大数据的商业价值加上了“潜在”这两字。为什么需要这么关注这个字?其实这跟你的投资回报率非常有关系。

例如,大家都知道如果你能把新浪微博上的数据都扒拉下来,必然对很多生意都非常有帮助,例如各大电商网站,各大招聘网站等等。但是,你必须考虑清楚构建一个能存储和分析新浪微博数据的大数据平台的成本有多高,而你基于这些数据构建的解决方案能给你创造多大的商业价值。举例来说,电商网站可以通过微博数据进行社交推荐,也可以根据用户正在谈论的关键热词进行针对性的商品需求趋势预测并作针对性的营销。这些用法都很好,都能看到商业价值,可是,最关键的问题在于,如果你知道花五百万搭建整个大数据团队和平台,一年后只能为你的生意带来四百万的增长,你还愿意干这件事情吗?

这里面牵涉到一个很关键的因素:大数据的价值密度问题。要知道,存储和计算PB级的数据是需要非常高的成本的,大数据虽然看起来很美,但是价值密度却远远低于传统关系型数据库中已经有的那些数据。有一句话笔者很认同:“如果用石油行业来类比大数据分析,那么在互联网金融领域甚至整个互联网行业中,最重要的并不是如何炼油(分析数据),而是如何获得优质原油(优质元数据)”。以股市为例,真正有价值的数据都只会在很小范围内(例如庄家之间)传播,极少可能会流落到互联网上来,所以你如果想去只靠分析微博上网民对股票涨跌的评论来做行情预测的话,真的是要小心了。

阿里之所以牛气,就因为他掌握了全国上亿网民实名制的历史交易记录,这会成为将来阿里金融帝国最重要的资产。而像“挖财”这样的理财软件,则选择了围魏救赵的策略,用“免费”的噱头积累大量用户的理财数据,以便他日能转换成商业价值。而像雪球,知乎这样的高质量UGC社区,最大的资本也就是在于这些高价值密度的内容所拥有的巨大可能性。当年友盟被高价收购的时候,他们最大的资产也就是来自于他们所掌握的移动互联网领域的高价值数据。笔者愚见,当大家为各种层出不穷的大数据新技术而热血沸腾的同时,一定不要忘记了兄弟们用大数据的初衷,只是为了挖掘更大的商业价值而已。

回到刚刚提到的阿里巴巴金融数据,微博上的大数据怎么被更高效利用的问题,阿里和微博正在做的就是所谓Big-Data-As-a-Service的服务,所以你不需要自建一个专门用来存放淘宝和新浪微博海量数据的平台,产生不必要的成本浪费,而只需要根据自己的需求,直接通过阿里和微博提供的大数据服务的付费和免费接口,去对那些真正能对你产生价值的淘宝、微博数据进行分析,按需付费,实现双赢,甚至多赢。也许到那一天,我们才能真正在大数据的成本和收益之间取得一个很好的平衡,以创造更多的社会价值。

简而言之,玩大数据的时候,请一定要考虑清楚你所面对的数据的价值密度有多高,归根结底,商业的本质只是希望通过大数据挖掘更多的商业价值,仅此而已。

IBM研究院(CRL)诚聘 Bigdata/Clould 方向正式员工

工作地点:北京
工作职位:正式员工

IBM中国研究院是IBM技术力量最强的部门,在新技术研发,前沿学术研究,高价值专利等领域都具备一流水平,我们的员工大都来自清华北大中科院等中国一流学府,我们能给您提供一流的技术研发环境与最具挑战的技术研发项目,期待您的加入!

1. 大数据、Cloud方向的硕士或博士生(应届/社招均可)。
2. 具有深入以下方面的学习工作背景 (多个条件为或的关系)
a)大数据平台(例如hadoop/yarn/spark)的部署、代码分析、工作机制理解
b)大数据应用(例如推荐系统,数据挖掘,机器学习等上层应用)
c)大数据平台、应用性能分析,性能调优
d)大规模机群上面的平台和应用的开发、测试

3. 有良好的表达能力,与人沟通能力,与人合作能力
4. 较强的学习,接受新知识的能力。
5. 较强的编程能力,如c/java/python/shell
6. 对计算机体系结构、并行计算有工作研究经验者优先
7. 较强的英文读写能力。

如果您对此职位感兴趣,请发送您的简历至chengc@cn “dot” ibm “dot” com。
请以“应聘CRL职位”作为邮件标题,以免邮件被过滤。多谢关注!