Understanding System and Architecture for Big Data

简介:IBM Research最近在Big Data领域有很多工作,例如我们组在4月份在10台采用POWER7处理器的P730服务器上成功地用14分钟跑完了1TB数据的排序(7月份又在10台Power7R2上用8分44秒跑完了1TB排序),这项工作已经发表为一篇IBM Research Report,欢迎大家围观,并提出宝贵意见,谢谢。

The use of Big Data underpins critical activities in all sectors of our society. Achieving the full transformative potential of Big Data in this increasingly digital world requires both new data analysis algorithms and a new class of systems to handle the dramatic data growth, the demand to integrate structured and unstructured data analytics, and the increasing computing needs of massive-scale analytics. In this paper, we discuss several Big Data research activities at IBM Research: (1) Big Data benchmarking and methodology; (2) workload optimized systems for Big Data; (3) case study of Big Data workloads on IBM Power systems. In (3), we show that preliminary infrastructure tuning results in sorting 1TB data in 14 minutes on 10 Power 730 machines running IBM InfoSphere BigInsights. Further improvement is expected, among other factors, on the new IBM PowerLinuxTM 7R2 systems.

By: Anne E. Gattiker, Fadi H. Gebara, Ahmed Gheith, H. Peter Hofstee, Damir A. Jamsek, Jian Li, Evan Speight, Ju Wei Shi, Guan Cheng Chen, Peter W. Wong

Published in: RC25281 in 2012


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .

X-RIME: 基于Hadoop的开源大规模社交网络分析工具

随着互联网的快速发展,涌现出了一大批以Facebook,Twitter,人人,微博等为代表的新型社交网站。这些网站用户数量的迅速增长使得海量的用户数据不断被产生出来,而如何有效地对这些海量的用户数据进行社交网络分析(Social Network Analysis)正成为一个越来越热门的问题。本文向大家介绍由IBM中国研究院和北京邮电大学合作开发的X-RIME开源库(http://xrime.sourceforge.net/),一个基于Hadoop的开源社交网络分析工具。






IBM Research China is looking for graduate computer science/engineering students who are interested in Hadoop performance optimizations works.

Location: Beijing
Job Tile: Research Intern
Job Openings: 1
Expected Duration: at least 3 months (full-time preferred)

Job responsibilities:
– Write MapReduce program and analyze Hadoop performance model.
– Tune and optimize the performance of Hadoop workloads.
– Publish high quality research papers to report your work.

– Creative and Self-motivated
– Knowledge of Parallel Computing and Distributed Systems.
– Knowledge of Java.
– Familiarity with Linux as development and testing environments.
– Knowledge of Apache Hadoop is a plus.
– Past research experience is a plus.

If you’re interested, please feel free to send your Chinese or English resume with the mail title of “Intern_Your Name_University_Major_Grade” (e.g. Intern_Zhang San_XXU_CS_Master) to chengc_at_cn.ibm.com.