云计算时代的多核开发

注:原文发表于《程序员》杂志2011年第12期,略有删改。

云计算和多核这两大趋势正对软件开发者产生重大影响。近几年,多核逐渐成为主流:随着提升CPU核心频率越来越难,处理器厂商选择了更加容易实现的多核方案来继续提升硬件的性能。进入后PC时代,移动处理器也同样面临着性能的提升与功耗的控制这两大挑战,为了满足提升性能与控制功耗的需求,多核也正成为其以后发展的方向。另一方面,云计算也渐渐成为软件开发的大势。在云计算的生态系统中最主要的设备是“端”和“云”。所谓端包括移动设备(智能手机,Pad等)和传统的PC,尤其是前者;而云指的就是由高性能服务器组成的大规模集群,它们向端设备提供各种服务支持。在云计算时代进行多核开发会是一幅什么样的场景?这两大趋势彼此会有什么样的影响?我们不妨先回顾一下在大型机和PC机时代软件开发的历史。

阅读全文>>

注:原文发表于《程序员》杂志2011年第12期,略有删改。

云计算和多核这两大趋势正对软件开发者产生重大影响。近几年,多核逐渐成为主流:随着提升CPU核心频率越来越难,处理器厂商选择了更加容易实现的多核方案来继续提升硬件的性能。进入后PC时代,移动处理器也同样面临着性能的提升与功耗的控制这两大挑战,为了满足提升性能与控制功耗的需求,多核也正成为其以后发展的方向。另一方面,云计算也渐渐成为软件开发的大势。在云计算的生态系统中最主要的设备是“端”和“云”。所谓端包括移动设备(智能手机,Pad等)和传统的PC,尤其是前者;而云指的就是由高性能服务器组成的大规模集群,它们向端设备提供各种服务支持。在云计算时代进行多核开发会是一幅什么样的场景?这两大趋势彼此会有什么样的影响?我们不妨先回顾一下在大型机和PC机时代软件开发的历史。

多核上开发将更加容易

在大型机时代,计算机非常昂贵,用户需要分时共享同一台大型机。计算资源的稀缺使得那时候的软件开发者必须高效地利用每一个处理器时钟周期,因此他们大都使用汇编、C等非常底层的语言来进行软件开发,而算法的效率是他们最关心的问题。在之后的几十年中,计算机硬件变得越来越廉价,软件开发者越来越不需要关心软件的性能。以主流的互联网应用为例,现在的开发大量使用成熟的框架来帮助自动生成大量的代码。就拿Django这个流行的Web开发框架来说,它的设计原则是“focuses on automating as much as possible and adhering to the DRY principle: Don’t Repeat Yourself.”开发者最核心的目标已经变成了如何用最少的代码,最快的速度将自己的点子转为成可用的软件产品并推向市场。“市场投放时间”已经取代“处理器时钟周期”成为软件开发的关键指标。在过去的几十年里,正是因为硬件一直在按照摩尔定律稳步地发展,所以开发者不再需要时刻关注软件的性能,而是将其注意力转移到更为重要的开发效率上,这点在近十年来Java、Python、Ruby等高级语言的兴起上就可见一斑。多核的出现,将硬件的细节再一次暴露在程序员的面前。如果想利用好多核,程序员必须手动的处理同步、死锁、数据竞跑等疑难问题,这极大的降低了软件开发的效率。现有的生产工具(多核开发框架、开发工具)远不能满足生产力(软件开发效率)的发展需要,还有很大的发展空间。可以预见,不久的将来更简单易用的多核开发框架将不断涌现,在多核上进行并行编程将变得越来越容易。

那放在云计算的大背景下,多核开发又会有怎么的发展呢?让我们先来看一看在“云”和“端”上的多核发展趋势。

“云”和“端”的多核趋势

据IDC预测,以智能手机和Pad为代表的移动设备在2013年将达到3.9亿台的出货量;相对的,传统PC机、笔记本和服务器加起来的出货量预计为4.4亿[1]。移动设备的日益流行将让更多的开发者转向移动平台。与此同时,云将为端设备提供更多的服务支撑。那么云和端上的多核将如何发展呢?

如上图所示,从2012年开始双核的手机/平板将成为主流。因为受到功耗的限制,移动设备上的处理器核数并不会迅速增长。实际上,移动设备将会越来越多地依赖专用硬件加速器来提供高性能、低功耗的解决方案。GPU(图形处理器)就是一个很好的例子。在手机和平板上观看高清电影、玩高分辨游戏时会我们可以依靠专用的图形处理器来进行图像渲染、高清解码等操作,这种解决方案相比于使用更多的通用处理器核数来说能提供更高的性能功耗比。从开发者的角度来讲,产品设计、用户体验才是现阶段移动开发者最关注的问题,而如何利用并行编程的方式提升移动应用的性能在短期内还不会是最主要的关注点。不可否认的是,越来越多的移动应用将通过并行化的方式提供更绚丽的3D渲染,更流畅的用户体验以及更丰富的特效(尤其是游戏类应用)。

与此同时,云端服务器的处理器核数将继续以每18个月翻一番的速度增长。在多核出现之前,软件开发者无需担心软件的性能,他们唯一需要做的就是“等”:等到下一代处理器出现时,软件对性能的需要就能得到满足。这个免费的午餐在多核到来之后不复存在:单纯靠增加处理器的核数并不能提升单线程程序的性能。换言之,我们必须通过并行的方式来提升“串行”应用的性能。但是如果我们所关心的问题不再是如何提升单线程的性能,而是如何利用更多的核来处理已经并行化的应用(例如MapReduce),那么核数的增加不就能继续“免费”地提升此类应用的性能吗?从这个角度来看,云端的应用与多核有点天生一对的意味。举例来说,以Hadoop为基础的大规模数据处理通过并行执行Map和Reduce来有效的对海量数据进行有效的处理。这种数据并行(data parallel)的模式关心的不再是单个Mapper或者Reducer的性能,而是所有Mapper、Reducer的吞吐量。如果需要处理的数据增加了,那么我们一般只需要增加更多的机器(即更多的处理器核数)就能达到所需的性能。

当谈到并行计算时,我们必须区分好两种完全不同的应用:并行(Parallel)与并发(Concurrency)。所谓并行是指两个或多个task同时执行用以完成同一个计算任务,例如使用两个线程来并行地完成矩阵乘运算。所谓并发是指两个或多个task同时执行,但是彼此相互独立、分别在完成不同的计算(这里的task不仅仅局限于线程,它也可以代表纤程、进程等)。而对云计算来说,云端所需要处理的请求大都是并发任务,因为不同的终端请求彼此大都是相互独立的。想象一下数千用户同时使用Google Docs编辑文件,此时服务器端所需要处理的就是数千个并发请求,这些独立的请求能非常自然地把服务器上的多核利用好。由此可见,在云计算的大背景下,大量存在的并发应用能天然的利用好云端的多核,通过并行的方式来利用好多核并不是那么的重要。

人人都是并行程序员?

在多核出现之初,许多业界人士都惊呼狼来了,人人都需要掌握并行编程。殊不知并行编程这项技术早在二三十年前就已经存在了,只不过当时大都是由搞高性能计算的一小群人会并行编程,而随着多核的普及并行编程的神秘面纱也逐渐向大众展开。幸运的是,在云计算的大图下,多核的应用场景以及与高性能计算领域大不相同。高性能领域关心的主要问题是如何用更多的处理器核心来更快的完成同一个任务,例如天气预测,地震模拟等。而在云计算领域,我们面临的主要难题是如何满足众多端设备的并发请求,这些请求彼此大都独立,因此处于云端之上的开发者已经不太需要担心如何用并行编程来解决他们所面临的问题。

如上图所示,在Google趋势中“云计算(cloud computing)”这个关键词的热度一直都处在上升趋势中,而“多核(multicore)”的热度一直都比较平稳。随着移动互联网的兴起,Android和iOS开发的热度也已经超过了多核。并不是所有的程序员都需要关心如何进行并行编程。在云计算的大背景下,并发应用能与多核很容易地结合在一起,将云端的多核利用好。

X-RIME: 基于Hadoop的开源大规模社交网络分析工具

随着互联网的快速发展,涌现出了一大批以Facebook,Twitter,人人,微博等为代表的新型社交网站。这些网站用户数量的迅速增长使得海量的用户数据不断被产生出来,而如何有效地对这些海量的用户数据进行社交网络分析(Social Network Analysis)正成为一个越来越热门的问题。本文向大家介绍由IBM中国研究院和北京邮电大学合作开发的X-RIME开源库(http://xrime.sourceforge.net/),一个基于Hadoop的开源社交网络分析工具。

其实早在90年代初就已经有许多企业和研究机构对社交网络进行过相关研究。然而随着互联网用户的急速的增长,今日的社交网站所需处理的数据已经不是传统的解决方案所能够应对的了。例如,传统的社会网络分析算法和工具往往都是单机形式的,在面对大规模数据集的时候往往会出现存储和处理能力不足等方面问题,再加上原始输入数据和社会网络的内部表示大都属于无结构或者半结构化数据,传统关系数据库并不擅长处理此类数据,使得利用传统的社会网络分析算法和工具对大规模数据集进行处理变得更加困难。另一方面,随着Hadoop的日益流行,许多中小互联网企业可以通过搭建Hadoop集群来方便地进行大规模数据处理。然而,Hadoop并不直接提供社交网络分析的算法库,因此实施海量社交网络分析仍存在较高门槛。基于这些需求,我们设计并实现了X-RIME。

X-RIME是一个基于Hadoop的开源社会网络分析工具。依赖于Hadoop提供的大规模数据并行处理能力,X-RIME实现了对十几中网络分析算法的并行化,提供了一整套用于对大规模社会网络进行分析处理的解决方案。通过使用X-RIME,用户可以方便快捷地对海量社会网络数据进行分析,从这些海量社会网络数据中获取更深层次的有用信息,从而进一步挖掘商业价值,支持商业决策以及发现新的业务增长点。

阅读全文>>

文 / 陈冠诚,史巨伟,杨博(IBM中国研究院),杨寅(人民搜索)

随着互联网的快速发展,涌现出了一大批以Facebook,Twitter,人人,微博等为代表的新型社交网站。这些网站用户数量的迅速增长使得海量的用户数据不断被产生出来,而如何有效地对这些海量的用户数据进行社交网络分析(Social Network Analysis)正成为一个越来越热门的问题。本文向大家介绍由IBM中国研究院和北京邮电大学合作开发的X-RIME开源库(http://xrime.sourceforge.net/),一个基于Hadoop的开源社交网络分析工具。

其实早在90年代初就已经有许多企业和研究机构对社交网络进行过相关研究。然而随着互联网用户的急速的增长,今日的社交网站所需处理的数据已经不是传统的解决方案所能够应对的了。例如,传统的社会网络分析算法和工具往往都是单机形式的,在面对大规模数据集的时候往往会出现存储和处理能力不足等方面问题,再加上原始输入数据和社会网络的内部表示大都属于无结构或者半结构化数据,传统关系数据库并不擅长处理此类数据,使得利用传统的社会网络分析算法和工具对大规模数据集进行处理变得更加困难。另一方面,随着Hadoop的日益流行,许多中小互联网企业可以通过搭建Hadoop集群来方便地进行大规模数据处理。然而,Hadoop并不直接提供社交网络分析的算法库,因此实施海量社交网络分析仍存在较高门槛。基于这些需求,我们设计并实现了X-RIME。

X-RIME是一个基于Hadoop的开源社会网络分析工具。依赖于Hadoop提供的大规模数据并行处理能力,X-RIME实现了对十几中网络分析算法的并行化,提供了一整套用于对大规模社会网络进行分析处理的解决方案。通过使用X-RIME,用户可以方便快捷地对海量社会网络数据进行分析,从这些海量社会网络数据中获取更深层次的有用信息,从而进一步挖掘商业价值,支持商业决策以及发现新的业务增长点。

1. X-RIME架构介绍

 

 

图一描述了X-RIME的整体架构,它主要由四层组成:HDFS,X-RIME数据模型,X-RIME算法库以及基于社交网络分析的商业智能分析应用。

X-RIME整体架构
图1. X-RIME整体架构

X-RIME算法库是X-RIME的核心组成部分,他基于Map/Reduce实现了十余种分布式社交网络处理算法。

X-RIME最底层采用了HDFS来存储海量数据。像很多其他基于Hadoop的数据分析解决方案一样,X-RIME也采用了HDFS来构建底层的海量数据存储设施。整个X-RIME算法库的所有的输入文件、中间结果和最终结果都会存储在HDFS上。

处于倒数第二层的X-RIME数据模型层实现了社交网络数据的“数据结构”。我们知道,社交网络的基础模型是图论中的图模型。在这个模型中,社会网络的个体被视为图中的节点,个体之间的关联被视为图中的边。 X-RIME数据模型层包括了近20 种数据结构,主要包括基于Hadoop 的对社会网络中的点、边等抽象概念的具体数据结构表示。在后面一节我们会详细介绍该数据模型的设计原则。

在X-RIME数据模型层之上的是X-RIME核心算法库(它运行在Hadoop的MapReduce框架之上)。在算法库中,我们通过map()/reduce()函数对的形式实现了十余种常见的社交网络分析算法。这些算法通过将多个Hadoop Job按算法工作流程组合在一起来共同完成相应的任务。这些算法都被相同的接口封装起来,这些接口一般包括四种参数:(1)输入文件在HDFS中的路径,它保存了与X-RIME数据模型相兼容的输入文件;(2)输出文件在HDFS中的路径,它用以保存最终的分析结果;(3)MAP/REDUCE的相关参数,例如Mapper数或者Reducer数等;(4)社交网络分析算法相关参数,例如迭代次数等。

图一中最顶层是基于社交网络分析的商业智能分析应用。它通过调用X-RIME核心算法库来实现对社交网络的数据分析。如果需要的话,用户还能将它与已有的数据仓库解决方案集成(例如JAQL,Mahout等),从而提供一个更加完整、高效的综合商业智能分析解决方案。

2. X-RIME 数据模型的设计原则

 

 

X-RIME 的设计目标是用来专门做大规模数据集社会网络分析的工具,因此我们对X-RIME 数据模型进行设计时必须考虑以下两点原则:X-RIME 需要处理大规模数据集;X-RIME 分析的对象是社会网络。X-RIME 处理大规模数据集的能力主要依赖于Hadoop的大规模并行处理能力,因此只要X-RIME 中所有的数据结构都是基于HADOOP 的海量数据集接口即可。这里我们重点分析X-RIME分析的对象即社会网络的特点。之前的分析中已经提到社会网络的基础模型是图论中的图模型,在这个模型里,社会网络中的个体被视为图里的结点v ,结点的集合为V ;个体之间的关联被视为图里面的边e,边的集合是E = {e (u, v) | u∈V, v∈V},因此整个模型就可以看作是G = (V, E)。基于此我们对X-RIME 的数据模型做了如下考量:

2.1 采用邻接矩阵还是邻接表

稀疏图和稠密图的邻接表与邻接矩阵形式
图2. 稀疏图和稠密图的邻接表与邻接矩阵形式

如图 2 所示,要表示一个图G = (V, E),有两种标准的方法,即邻接矩阵和邻接表。一般认为当|E|远小于|V|2的图属于稀疏图,反之则认为是稠密图。使用邻接矩阵表示法的优点在于可以很快判断两个给定结点是否存在连接边,缺点在于当要表示的图是稠密图的时候有大量的空间会被浪费。邻接表表示方式的优点在于节省空间,缺点在于判断两个给定结点是否存在连接表需要遍历其中某个结点的邻接表,效率较低。基于以下两点考虑,我们采用了邻接表的方式表示X-RIME 中的图结构:

(1)社交网络一般属于稀疏图结构,因此使用邻接表表示可以节省大量空间,提高空间利用率。
(2)X-RIME 中大部分算法不需要快速判断两个给定结点是否存在连接边。

2.2 边的表现形式

在邻接表中,结点之间的关系需要使用边来承载,边的形式可以有多种,如有向边,无向边,自环边(自己指向自己)等。考虑到在社会网络中,上述几种边都有可能存在,在不同的应用场景中有不同需求,因此我们需要有灵活的数据结构来支持上述各种不同形式的边。此外还有一种情况需要考虑,当有向边用{from, to}来表示时,传统的邻接表表示法只是将这条边信息记录在from 端,但是在社会网络分析中,我们可能存在某种场景需要同时将这条边信息记录在to 端,X-RIME 的设计中考虑了这种应用场景。

2.3 额外的承载信息

社会网络中结点和边需要存储额外信息
图3. 社会网络中结点和边需要存储额外信息

X-RIME 需要处理的社会网络图与传统的简单图不一样,它是个体以及个体之间复杂关系的一种抽象。如图3 所示,在社会网络中,结点自身往往需要存储一些额外的信息,例如当图中的结点表示人的时候,可能需要额外记录这个人的性别、年龄、家庭地址等信息;结点之间的关系(边)往往也需要存储一些额外的信息,例如当图中的边表示两个人是好朋友的时候,可能需要额外记录这条边的强度(好友关系的强烈程度)、边的类型(关系类型,如家人、朋友、同学等)、好友间的物理距离等。基于上述考虑,X-RIME 的设计中必须考虑为结点和边提供额外的信息存储功能。

2.4 比较器

在社会网络中,个体和边需要进行某种程度的对比。例如在好友关系网中,人们可能希望比较得出哪些人是自己最好的朋友,人们同样可能希望比较得出自己在好友心目中的重要程度等。映射到X-RIME 中,大量的运算的确需要对结点以及边进行比较。这种比较可以是简单的数值比较(例如边的权值比较)也可以是复杂的逻辑比较(例如综合边的关系类型,边的强度,结点之间的物理距离等进行比较)。X-RIME 的设计中必须考虑数据类型之间的比较,需要设计各种比较器。

2.5 效率问题

X-RIME 需要处理的是大规模海量数据,如果我们对输入数据的读写处理只是简单地根据原始的文本文件格式进行读写,势必影响效率,因为这样多了一个中间转换过程,需要读入内存再根据特定的数据结构格式进行转换。Hadoop 提供的序列化IO 接口为我们提供了一个有效的方法来提高读写效率。在读取输入数据之前,我们需要预先对原始文本进行转换,通过Hadoop 序列化IO 接口的序列化功能将其转换成二进制镜像文件形式,这样每次X-RIME 读取被序列化产生的二进制文件的时候可以直接通过Hadoop 序列化IO 接口的反序列化功能将镜像文件装载到内存里,输出的时候直接通过Hadoop IO 的序列化功能进行输出,效率大大提高。两种读写方式的示意图如图4 所示。

两种输入输出方式(左:较为低效的传统方式,右:高效的序列化方式)
图4. 两种输入输出方式(左:较为低效的传统方式,右:高效的序列化方式)

3. X-RIME使用介绍

 

 

使用X-RIME大致可以分为四步。第一步:获取原始数据,例如使用爬虫获取原始网站数据。第二步:对数据进行预处理以转化成X-RIME数据模型所支持的格式。这个步骤与用户提供的具体数据格式相关,因而通常由X-RIME用户自己实现。第三步:调用X-RIME算法库对这些数据进行社交网络分析。第四步:对X-RIME的输出结果进行整合,生成易于理解的文档。

下面我们来介绍下使用X-RIME对某BBS中一个分论坛进行弱连通分支(Weakly Connected Components,后面简称WCC)算法分析的结果。在BBS中,每一个帖子的发起者A是一个节点,而如果另一个用户B回复了这个帖子,我们说这两个用户间形成了一个关系,即B指向了A。

弱连通分布
图5. 弱连通分布

图5中的蓝红紫三条线分别代表该BBS中MilitaryView版, Circuit版和Career_POST版的WCC分布情况。从图中我们可以看到,MilitaryView版和Circuit版中大部分的用户的WCC值都很高。这说明这两个版块中的大部分用户彼此都直接或者间接的联系在一起。相反的,Career_POST版中大部分的用户彼此间的联系都非常松散。其实这个结果非常易于理解,因为MilitaryView和Circuit版是专门的版块,在这个版块的用户大都是基于相同的兴趣而产生的发帖、回帖行为,因此彼此间的互动更频繁、联系更紧密;相对的,Career_POST版主要被用于发布和浏览招聘信息,因此用户的回帖行为不多,用户间的关联性不强。

4. 总结

 

 

X-RIME作为基于Hadoop的开源工具,为大家提供了一种方便快捷地进行大规模社交网络分析的新选择。如果您对X-RIME有什么新的需求或者建议,欢迎您直接与我们联系:chengc@cn.ibm.com。

参考文献

 

 

[1] X-RIME Homepage: http://xrime.sourceforge.net/

[2] Wei Xue, JuWei Shi, Bo Yang. X-RIME: Cloud-Based Large Scale Social Network Analysis. Proceedings of 2010 IEEE International Conference on Services Computing.

[3] Kai Shuang, Yin Yang, Bin Cai, Zhe Xiang. X-RIME: HADOOP-BASED LARGE-SCALE SOCIAL NETWORK ANALYSIS. Proceedings of IC-BNMT2010.

[4] 杨寅.大规模社会网络分析数据模型的设计与实现. 中国科技论文在线.

移动设备进入多核时代!

Nvidia最近发布了代号为Tegra 2的新一代双核移动处理器,移动设备即将进入多核时代。该款处理器由两个基于ARM Cortex A9的核心及其它视频音频图形专用核心(可看成Accelerator)组成,是一个典型的异构(Heterogeneous)平台。这个平台的关键特征有两个:低功耗(比高频单核的处理器耗电小),高性能(异构平台的性能优势)。

阅读全文>>

Nvidia最近发布了代号为Tegra 2的新一代双核移动处理器,移动设备即将进入多核时代。该款处理器由两个基于ARM Cortex A9的核心及其它视频音频图形专用核心(可看成Accelerator)组成,是一个典型的异构(Heterogeneous)平台。这个平台的关键特征有两个:低功耗(比高频单核的处理器耗电小),高性能(异构平台的性能优势)。

我之前也讲过为什么我们要迁移到多核平台,简单来说,继续提升核心频率及电压的办法会让处理器的功耗呈指数级增加,此时的功耗会难以让人接受;而在晶体管数目持续增加的前提下,工业界自然就(被迫)选择了更加容易实现的多核方案来继续提升硬件的性能。这个趋势也即将体现在移动处理器上。

Nvidia的白皮书《The Benefits of Multiple CPU Cores in Mobile Devices》中提到了几个多核对移动应用带来的好处:

1. 更快的网页加载速度

现在的网页内容越来越丰富,也越来越复杂。HTML5,Flash,Javascript,视频等内容的呈现都需要强大的处理能力。Nvidia提供的测试数据表明Tegra 2的Javascript性能提升了1.5~2倍,网页平均加载速度提升了46%。事实上Firefox,Chrome等桌面浏览器都已经采用了多线程,而Android浏览器,Safari等采用的Webkit内核也已经实现了多线程。在浏览器已经并行化的前提下,多核移动处理器自然能提供更快更丰富的网页渲染体验。

2. 更低的功耗及更高的性能瓦特比

对多核来讲,任务调度及电源管理算法是提升性能瓦特比的关键。Tegra 2能通过如下几点降低功耗:
1)把任务平均分配到两个核心上,这样每个核心都不必跑在最高频率/电压上,而只需要以较低的频率/电压就能完成任务,从而节省功耗
2)如果要执行的任务是高度并行化的,Tegra 2就能更快的完成这个任务,从而更快的进入超低功耗待机模式,节省更多电量
3)如果任务只需要一个核心的话,其他计算单元可以被关闭从而节省电量

续航能力一直是手机、Tablet等移动设备的关键问题之一,在电池技术没有突破性进展的今天,我们只能寄希望于硬件/软件上的优化手段来降低功耗了。

3. 提升游戏体验

Tegra 2的图形处理单元叫做Ultra Low Power (ULP) GeForce GPU,性能应该很不错。现在的一些主流游戏引擎早已经完成了并行化(多线程分别用来完成渲染,音频,网络,解码,碰撞检测,透明等任务)。白皮书中提供的测试数据表明虚幻3引擎在Tegra 2双核心上快了将近70%。一个值得注意的地方时很多游戏引擎是通过task parallelism的方式以适应不同的处理器核心数目,这说明基于这些引擎的游戏可以在几乎不修改程序的情况下在以后的4核乃至8核移动平台上取得更好的游戏体验。游戏在最受欢迎的移动应用中还是占了大头的,所以多核对移动游戏应用的影响会非常大。

下面是一些主流游戏引擎使用的线程数:
Game/Engine(Number of Threads)
Unreal Engine 3(4+)
Id Tech 5(6+)
Frostbite(14)
Civilization 5(12)
Mafia 2(4)
Crysis(8)
Uncharted 2(8)
Killzone 2(8+)

4. 更平滑的用户体验及更快的多任务处理能力

多任务处理在手机/Tablet上都非常常见。当你一边听着歌,一边下载电影,一边上网冲浪时,多核处理器就能帮你把这些任务分配到不同的核心上进行处理,从而给你提供更好的更平滑的用户体验。我记得iPad上的一些电子杂志的界面响应速度是个很大的问题,因为渲染速度太慢了,性能更高的多核平台就能提供更快的处理速度,提升用户体验,当然,这个前提是该程序能充分利用好多核。

想到这我还要插一句题外话。iOS一开始不支持对第三方程序的多任务处理功能其实主要是因为iPhone/iPad上内存有限(256MB)且没有硬盘(即没有swap),具体可参考Robert Love(该大牛现在在做Android)这篇《Why the iPad and iPhone don’t Support Multitasking》;至于Android怎么解决多任务处理的可以参考这篇《Multitasking Android Way》(想看这两篇都要会功夫,你懂的)

移动设备的多核时代已经到来,移动开发者们,你们准备好了么?

Proposal for the “Search and sort” competition of Findwise

In this April I took part in a competition hold by Findwise and Mriday which is about search technology.

Search and Sort | Findwise

Current, Search and Sort | Findwise April 25th, 2009

We are constantly acquiring innovative ideas and solutions in the field of search technology. Therefore we have created the following contest to discover people who are interested in joining Findwise and build next generation’s search technology.

Project overview

The name of this contest is called Search and Sort. We can start by looking at an example which everybody is familiar with, Google. The Google search engine is the most used search engine on the Web. The search results generated from it includes webpages, PDF, Word documents, Excel spreadsheets, Flash, videos etc. For any query, up to the first 1000 results can be shown with a maximum of 100 displayed per page.

阅读全文>>

In this April I took part in a competition hold by Findwise and Mriday which is about search technology.

Search and Sort | Findwise

Current, Search and Sort | Findwise April 25th, 2009

We are constantly acquiring innovative ideas and solutions in the field of search technology. Therefore we have created the following contest to discover people who are interested in joining Findwise and build next generation’s search technology.

Project overview

The name of this contest is called Search and Sort. We can start by looking at an example which everybody is familiar with, Google. The Google search engine is the most used search engine on the Web. The search results generated from it includes webpages, PDF, Word documents, Excel spreadsheets, Flash, videos etc. For any query, up to the first 1000 results can be shown with a maximum of 100 displayed per page.

Despite all this power, it is still sometimes time consuming to find the exact piece of information you are looking for. This is because although the different results are ranked, they are not well organized. For the average user, wouldn’t it be neat if different types of search results are categorized and displayed in different
groups?

Submission

Your submission for this contest should contain two parts

Think of a search engine based on the concept of Search and Sort. Come up with a user interface design including two pages. One welcome page with the search box (and whatever else you think is suitable), and one page with the different types of results categorized, sorted, and presented in a userfriendly fashion. There is no strict requirements on exactly how the results will be categorized. It is entirely up to you to decide the types of categories. In fact, this will be a key deciding factor when your contest submission is being reviewed.

The second part of the contest is to discuss the framework behind your graphical user interface. What programming language and platform do you suggest for building the system? How would you extract information from different types of results and use that information to categorize them? Describe the plan to develop and implement it. The key for this part is to show a good understanding of the basics of a search engine, and a passion to innovate new ideas.

Searching has become the standard way for Internet users to find information. This contest gives you the chance to take Searching to the next level. If you are interested in search technology and would like to join the leading vendor independent company within this segment in Sweden, then send us your ideas. We will carefully review your submission and provide feedback. Your submission should be in PDF or DOC format.

The deadline for submission is 2009-04-30

Reward

The top 5 submissions will be invited to Findwise and receive a learning session about the company and the future of search technology. The most outstanding submission will receive a monetary reward of 10 000 SEK. Job offers will be presented to qualified individuals if requirements are met.

I spent a whole Sunday to write down a proposal for this topic. That’s the first time for me to write down something on “search technology” which is a very interesting and hot area nowdays. Even though this paper looks a lit bit naive now, I still like it since I enjoy the feeling of writing down something interesting very much.

You can find and download my proposal from the link below:

Search and sort.pdf